State Machine Diagram

ldentifying Object Behaviour

State Machine Diagram

* State machine diagram is UML 2.0 diagram that
models object states and transitions

* Complex problem domain classes can be modelled
 State of an object

* A condition that occurs during its life when it satisfies some
criterion, performs some action, or waits for an event

* Each state has unique name and is a semi permanent condition or
status

 Transition

* The movement of an object from one state to another state

Systems Analysis and Design in a Changing World, 5th Edition 2

Simple State Machine Diagram for a
Printer

State indicates a state Transition-name has trigger name,
of being of the object. guard, and action-expression.

onButtonPushed [Safety cover closed] / run self-test
Off On

|

offButtonPushed

Beginning pseudostate Transition moves the object from the
denotes start of state origin state to the destination state.

machine diagram.

State Machine Terminology

Pseudo state — the starting point of a state machine, indicated
by a black dot

Origin state — the original state of an object from which the
transition occurs

Destination state — the state to which an object moves after the
completion of a transition

Message event — the trigger for a transition, which causes the
object to leave the origin state

Guard condition — a true/false test to see whether a transition
can fire

Action expression — a description of the activities performed as
part of a transition

Composite States and Concurrency—
States within a State

4 . A
H@ print(document) . 4 Working N\

N

Load and print sheets

- J

[finished]

\. /

Concurrent Paths for Printer in the On State

onButtonPushed fill lowM
.—)-| Off } qa- I Full owMsg 0 Low
\ fill ()

trayEmpty ()

offButtonPushed () Pﬁmfdﬂﬂ“me“ﬂ{ Working \

Q_oad and print sheetﬂ
[finished] /

Rules for Developing State Machine Diagram

e Review domain class diagram, select important ones,
and list all state and exit conditions

* Begin building state machine diagram fragments for
each class

e Sequence fragments in correct order and review for
independent and concurrent paths

* Expand each transition with message event, guard-
condition, and action-expression

* Review and test each state machine diagram

State machine for Ticket Object

subscribe/assign)

' Initial state —
& / timed nurfunlncl-:f ctate \
N accept/buyl)
‘Auallal:rle 5E|Ecmmm f Locked | it (Sold J
S~ J\)

| -r_eﬁectfunlncl-:i‘.l -
i fransiticn

exchange(other)/assign{);reset{other)

tngger event event parameter effect

State machine for Lift

A\

/r Moving up \\
\ go up (floor)
On
) e

A first floor j do/moving to floor
NG ,/

arrived

/’ Moving downw
\
arrived / Idle N
do/moving to floor T
timer=0
\ do/increase timer

go down (floor) \‘“-—~———-—/

[timer = time-out] / go down (first floor)

go up (floor)

RMO Domain Class States for Saleltem

Object

State Transition causing exit from state
Newly added finishedAdding

Ready to ship shipltem

On back order iternArrived

Shipped

Mo exit transition defined

[Newly added

_/

G” back order]itemArrived ()

V

o

finishedAdding () shipltem ()
)Geady to shi[) ::—(

Systems Analysis and Design in a Changing World, 6th Edition

10

Final State Machine Diagram for
Saleltem Object

e addltem() and archive() transitions added
 markBackOrdered() transition added

markBackOrdered () \ itemArrived ()
On back order)

1 markBackOrdered ()
/ place purchase order

!
.M G i added) finishedAdding (| Ceady . shia shipltem () }(_) archive) ®

Systems Analysis and Design in a Changing World, 6th Edition

RMO Domain Class States for Sale
Object

Open for item adds completeSale
Ready for shipping beginShipping

In shipping shippingComplete
Waiting for back orders backOrdersArrive
Shipped paymentCleared
Closed archive

Systems Analysis and Design in a Changing World, 6th Edition

Initial State Machine Diagram for RMO
Sale Object

(Waiting f{)r\ backOrdersArrive ()

back orders J

(Dpenfcrr tem) completeSale () [~ Ready for beginShipping () .
adds) ’k shipping) n shipping

shippingComplete ()

\ 4

(Shpped \ paymeniCleared () f Closed \ archive () -
J L J

Systems Analysis and Design in a Changing World, 6th Edition 13

Final State Machine Diagram for Sale
Object

addltem ()

\
startSale () . \ completeSale () Ready for
Open for item adds) l shipping

beginShipping ()

In shipping \
_ _ shippingCurrent () [backorders exist] Waiting for
Being shlpped) }K back orders

/

\ backOrdersArrive () /

| shippingComplete ()

Shipped | paymentCleared () _{ C] archive () ~._©

= losed =

Extending and Integrating
Requirements Models

 Use cases

e Use case diagram
* Use case description
e Activity diagram
» System sequence diagram (SSD)
* Domain Classes

 Domain model class diagram
e State machine diagram

Systems Analysis and Design in a Changing World, 6th Edition

15

Integrating Requirements Models

Domain model
class diagram

Use case
diagrams

State machine
diagrams

Use case
descriptions

Activity
diagrams

System sequence
diagrams (SSDs])

Y

Systems Analysis and Design in a Changing World, 6th Edition

16

summary

Chapters 3 and 4 identified and modeled the two primary
aspects of functional requirements: use cases and
domain classes

This chapter focuses on additional techniques and
models to extend the requirements models to show more
detall

Fully developed use case descriptions provide
Information about each use case, including actors,
stakeholders, preconditions, post conditions, the flow of
activities and exceptions conditions

Activity diagrams (first shown in Chapter 2) can also be
used to show the flow of activities for a use case

Summa 'Y (continued)

System sequence diagrams (SSDs) show the inputs and
outputs for each use case as messages

State machine diagrams show the states an object can
be in over time between use cases

Use cases are modeled in more detail using fully
developed use case descriptions, activity diagrams, and
system sequence diagrams

Domain classes are modeled in more detail using state
machine diagrams

Not all use cases and domain classes are modeled at
this level of detail. Only model when there is complexity
and a need to communicate details

